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Several non-phenomenological density matrix treatments of electron-transfer (ET) reactions in condensed
phases are developed and examined. The methods consider the donor and acceptor system (the solute) under
the influence of the surrounding fluctuating solvent. The main emphasis is placed on semiclassical methods,
where the starting point is the Hamiltonian of the quantum mechanical electronic states of the solute. The
diagonal elements of the Hamiltonian include the fluctuations of the solute electronic energies as a result of
the interaction between the solute and the field from the classically moving solvent molecules. The fluctuating
Hamiltonian is used to construct a Liouville equation, which is treated by three approaches. The first method
is based on a direct numerical integration of the relevant Liouville equation. The second involves the use of
a second-order Liouville equation, and the third involves the use of a Redfield type equation. The methods
are examined by simulating electron transfer between two sodium-like atoms that are held at a 4 Åseparation
in water. The simulations generate the fluctuations of the electronic energies of the states that are involved
in the electron-transfer process. The fluctuating energies are then used in evaluating the rate constant of the
reaction as a function of its assumed free energies. The results of the three approaches are similar to the
corresponding results obtained from the Marcus equation. However, the Redfield equation converges much
more quickly than the direct Liouville equation and its second-order version. The problems associated with
the semiclassical treatments are briefly considered, emphasizing the approximation involved in treating the
solvent motion classically. Some of these problems can be overcome by a previously developed density matrix
approach1 that uses classical simulations to evaluate the Franck-Condon factors of the solvent vibronic states.
This vibronic density matrix treatment is briefly described and used in simulating an electron-transfer reaction
in the reaction center fromRps.Viridis.

I. Introduction

Many fundamental processes in chemistry and biology
involve charge-transfer reactions in condensed phases.2 Under-
standing such processes on a detailed microscopic level is of
great current interest,2-5 and significant progress has already
been made by computer simulation approaches.1,2,6-12 This
includes the simulations of electron transfer (ET) in the diabatic
and adiabatic limits2,10-12 and simulations of proton transfer (PT)
and other processes in the adiabatic limit.2,13-16 Yet simulations
that describe consistently the time evolution of more than two
electronic states in solutions in the diabatic, adiabatic, and the
intermediate limits have not been fully developed and examined.
Such approaches are clearly needed for systems with intermedi-
ate coupling, and a good example is the case of the primary
charge separation in bacterial reaction centers. This case involves
three electronic states with coupling whose exact magnitude is
unknown, but its estimates are in the upper end of the diabatic
limit.

In the search for an effective approach for simulating multi-
level crossing processes in dissipative systems, it is tempting
to explore the density matrix approach. This approach has been
developed to what is perhaps the most powerful tool for studying
relaxation processes on a phenomenological level.17-19,23-28 It
is not obvious, however, how to incorporate microscopic simu-
lations of charge-transfer processes in density matrix treatments.
For example, semiclassical models that treat the electronic states

quantum mechanically and the solvent motion classically can
result in density matrix treatments that violate the rule of
microscopic reversibility. Another problem may be associated
with the description of the solute-solvent coupling.7 Some
density matrix treatments may not reproduce correctly the effect
of the change of the solute dipole moment on the solvent
“reaction field”. Furthermore, semiclassical density matrix
approaches cannot provide exact quantum mechanical results
for transitions between electronic states due to the classical
description of the solvent modes. Trying to treat the solvent
modes quantum mechanically leads to major problems with
regards to the evaluation of the relevant relaxation timeT1 that
describes the vibrational relaxation within each electronic state.
That is, in simpler problems, such as vibrational relaxation of
diatomic molecules in solution, it is quite easy to obtain theT1

for transitions between the solute vibrational levels from MD
simulations by considering the perturbation of the solute
vibrational level by the solvent fluctuations. However, it is not
clear how to do so in simulations of charge-transfer processes
whenT1 describes transitions between the solvent vibrational
levels to themselves. In such cases, the solvent is both the
relaxing system and the system that causes the relaxation.

The present work develops, examines, and compares different
ways of combining MD simulations with density matrix
treatments. The focus of this work is on semiclassical treatments
where the electronic states are described quantum mechanically
and the solvent nuclear motions (vibrational states) are treated
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classically. Nevertheless, a quantum mechanical treatment of
the solvent vibrational modes is also considered.

II. Semiclassical Theoretical Treatments

This section develops and examines alternative density matrix
models for simulations of surface crossing processes in con-
densed phases. The models considered include a direct Liouville
treatment, a second-order Liouville treatment, and a Redfield
type formalism. The performance of the different models in
studies of charge-transfer processes in polar solvents is used as
a validity check.

We will confine a significant part of our derivation to a simple
model of only two electronic states, considering an electron
transfer from a donor D to an acceptor A in a polar solvent.
However, the formulation used can be easily extended to cases
with many electronic states. The time-independent wave function
of a two-state system can be approximated by a combination
of the diabatic wave functions

whereψ is the combined wave function of the solvent molecules
with i andj designating different electronic states of these wave
functions. Neglecting charge transfer from the solute to the
solvent, we can treat the effect of solvent excitations by
assigning classical induced dipoles to its molecules while
omitting thei and j indexes (e.g., see the appendix of ref 33).
Thus, the time-dependent wave function of the system can be
approximated by

where x, Q, and R are the coordinate vectors of the solute
electrons, the solvent nuclei, and the solute nuclei, respectively.
Here, we consider a case where both the distance between A
and B and the solute coordinates are fixed (if needed, we can
treat the vibrations of the solute quantum mechanically). In this
case the time-dependent wave function can be written as

The time evolution of the system can be determined by solving
the time-dependent Schro¨dinger equation while integrating over
the electronic wave function. This gives

where the vectorC is given by (Ca(t), Cb(t)) and the effective
two-state Hamiltonian is given by

where HRâ ) 〈æR|H|æâ〉, εR
0 ) HRR, and σ ) Hab. In our

specific case we can write

whereUi represents the time-dependent interaction between the

solute and the fluctuating solvent molecules. In cases whereσ
is large it might be required to move to the adiabatic representa-
tion in order to get stable time-dependent integration. This
requires diagonalization of the Hamiltonian in every time step
and consideration of the solvent-induced fluctuations of the
adiabatic energies (for a related treatment in surface hopping
studies see ref 8). However, the points examined in the present
paper are more conveniently discussed in the diabatic repre-
sentation. Issues that are related to the transfer from the diabatic
to the adiabatic limits are left to subsequent studies (see also
discussion in section III). At any rate, within the diabatic
representation of eq 6 we can write the Hamiltonian as

In this work we chose to use a density matrix approach rather
than to solve eq 4. Thus, we consider the Liouville equation

whereFRâ ) CRCâ
/

Many times it is convenient to use the interaction representa-
tion whereF andH are transformed into the following matrices.

The time dependence ofF̆* is obtained by solving

The calculation of the actual population of the system requires
the evaluation of the ensemble average ofF, using

where〈 〉0 designates an average over the initial conditions of
the system. Here, we will try first to examine a second-order
approach that follows the approximations made in deriving the
Redfield equation. In this strategy one avoids the direct
numerical averaging of the Liouville equation by performing
short time averages on the second-order density matrix. That
is, for a finite but short time interval we can write17

In an explicit numerical integration we update the second-
order equation every time step, using

Here, the formal expression of eq 12, which corresponds to a
single time step, is replaced by the corresponding prescription

φa
i ) æ(D) æ(A+)ψsolvent

i,a ) æaψsolvent
i,a

φb
j ) æ(D+) æ(A) ψsolvent

j,b ) æbψsolvent
j,b (1)

Ψ(x,Q,R,t) ) Ca(t) æa(x) + Cb(t) æb(x) (2)

Ψ(x,t) ) Ca(Q(t)) æa(x) + Cb(Q(t)) æb(x) (3)

Ċ ) i
p
HC (4)

H(Q) ) [Haa(Q) σ(Q)
σ(Q) Hbb(Q) ] (5)

H(t) ) [εa
0 + Ua(Q(t)) σ

σ εb
0 + Ub(Q(t)) ] (6)

H(t) ) [εa
0 0

0 εb
0]+ [Ua(t) 0

0 Ub(t) ]+ [0 σ
σ 0 ] (7)

) H0 + H+(t)

) H0 + HU(t) + H(σ)

F̆ ) i
p

{FH(t) - H(t)F} ) i
p
[F,H] (8)

F*( t) ) exp{(i/p)H0t} F(t) exp{-(i/p)H0t} (9)

H+*( t) ) exp{(i/p)H0t} H+(t) exp{-(i/p)H0t}

F̆* ) i
p
[F*,H+*( t)] (10)

〈F*(τ)〉0 ) 〈∫0

τ
F̆*( t) dt〉0 (11)

〈F̆*(τ)〉0
(2) ) 〈 i

p
[F*( t0),H

+*( t)] +

( i
p)2∫t0

t
[[F*( t0),H

+*( t′)],H+*( t)] dt′〉0
(12)

〈F̆*( tn)〉0
(2) ) 〈 i

p
[F*( tn-1),H

+*( t)] +

( i
p)2

‚∫tn-1

tn-1+∆t
[[F*( tn-1),H

+*( t′)],H+*( t)] dt′〉0
(13)
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in an iterative numerical integration. This means thatt is
replaced bytn and F*( t0) is replaced byF*( tn-1). Of course,
this expression is used only in numerical integration and not in
formal one step derivations (where eq 12 is being used).

Next we expand eq 12 and obtain

Here, we denoted in the exponentsεR by R andεâ by â. This
simplified notation is also used elsewhere.17 We also use the
relationship17

In the explicit expansion of eq 14 we will use the relationship

Rather than continuing with this general equation, we focus here
on the simplest case of the two-state system where we can write

where H and H̃ designate the Hamiltonian at timet and t′,
respectively.

After some manipulations we obtain

where (a - b) is a shorthand notation for (εa
0 - εb

0), ∆Uba(t) )
Ub(t) - Ua(t) and where we introduce the constraint〈∆Uba(t)〉0

) 0 by choosing the properεa
0 and εb

0. Equation 18 will be
considered in a direct evaluation of the second-order Liouville
equation.

Next we try to obtain a simpler expression for eq 18. We do
so by manipulating the second-order Liouville equation in the
way used in deriving the Redfield equation. Our task is to
express eq 14 in an autocorrelation formalism. In this derivation
we followed ref 17 and use for convenience the expression

We start by noting that eq 14 has terms of the form

where we extend the integration limit to infinity, since the
autocorrelation is assumed to decay in a relatively short time.

Following ref 17 we assume that the complex parts are
negligible so that

Thus, for example,

Here, we neglect the complex part of e-i(a-b)(t-t′), which is equal
to -i sin[(εa

0 - εb
0)(t - t′)] because the sine term approaches

zero ast - t′ f 0. Thus, we have

〈F̆RR′
/ (t)〉0

(2) ) 〈 i

p
[F*( t0),H

+*( t)]〉
0

+

1

p2
∑
ââ′
∫t0

t
{〈HRâ

+ (t′) Hâ′R′
+ (t) Fââ′

/ (t0)〉0 ei(R-â)t′ ei(â′-R′)t +

〈HRâ
+ (t) Hâ′R′

+ (t′) Fââ′
/ (t0)〉0 ei(â′-R′)t′ ei(R-â)t -

〈FRâ
/ (t0) Hââ′

+ (t′) Hâ′R′
+ (t)〉0 ei(â-â′)t′ ei(â′-R′)t -

〈Fâ′R′
/ (t0) HRâ

+ (t) Hââ′
+ (t′)〉0 ei(â-â′)t′ ei(R-â)t} dt′ (14)

HRâ
/ (t) ) ei(R-â)t HRâ(t) (15)

FRâ
/ (t) ) ei(R-â)t FRâ(t)

〈R|HU|â〉 ) HRâ
U ) δRâUR (16)

〈R|Hσ|â〉 ) HRâ
σ ) (1 - δRâ)σRâ

〈HRâ
U (t) Hγδ

U (t′)〉0 ) δRâδγδ〈UR(t) Uγ(t′)〉0

〈F̆aa
/ (t)〉0

(2) ) i
p

〈(Fab
/ (t0)σba

/ - σab
/ Fba

/ (t0))〉0 -

1

p2∑∫t0

t
〈{F*( t0) H+* H̃+* - H̃+* F*( t0) H+* -

H+* F*( t0) H̃+* + H̃+*H+* F*( t0)}〉0 dt′ (17)

〈F̆ab
/ (t)〉0

(2) ) i
p

〈[Fab
/ (t0) ∆Uba(t) + σab

/ (Faa
/ (t0) - Fbb

/ (t0)]〉0 -

1

p2∫t0

t
〈{F*( t0)H

+* H̃+* - H̃+* F*( t0) H+* -

H+* F*( t0) H̃+* + H̃+*H+* F*( t0)}〉0 dt′

〈F̆aa
/ (t)〉0

(2) ) i
p

〈(Fab
/ (t0) σba ei(b-a)t - Fba

/ (t0) σab ei(a-b)t)〉0 -

1

p2∫t0

t
dt′ {[σ2[ei(a-b)(t-t′) + ei(b-a)(t-t′)]〈Faa

/ (t0) - Fbb
/ (t0)〉0] +

[〈∆Uba(t′)(Fab
/ (t0)σba ei(b-a)t + Fba

/ (t0)σab ei(a-b)t)〉0]} (18)

〈F̆ab
/ (t)〉0

(2) ) i
p

〈[Fab
/ (t0) ∆Uba(t) + σab ei(a-b)t ×

(Faa
/ (t0) - Fbb

/ (t0)]〉0 + 1

p2∫t0

t
dt′ {〈[2σab

2 e2i(a-b)t Fba
/ (t0) -

2σabσbaFab
/ (t0)]〉0 - 〈∆Uba(t) σab ei(a-b)(t′-t) ×

[Faa
/ (t0) - Fbb

/ (t0)]〉0 - [〈Fab
/ (t0) ∆Uba(t) ∆Uba(t′)〉0]}

JRR′ââ′(ω) ) ∫-∞

∞
〈HRR′

+ (t′) Hââ′
+ (t)〉0 e-iω(t-t′) dt′ (19)

∑
â,â′

∫0

tf∞
dt′ 〈HRâ

+ (t′) Hâ′R′
+ (t) e-i(R-â)(t-t′)〉0 ei(R-â+â′-R′)t

) ∑
â,â′

〈∫0

∞
HRâ

+ (t′) Hâ′R′
+ (t) e-i(R-â)(t-t′) dt′〉0 ei(R-â+â′-R′)t

(20)

=
1

2
∑
â,â′

∫-∞

∞
dt′ 〈HRâ

+ (t′) Hâ′R′
+ (t)〉0 e-i(R-â)(t-t′) ei(R-â+â′-R′)t

1

2
∑
â,â′

∫-∞

∞
dt′ 〈HRâ

+ (t′) Hâ′R′
+ (t)〉0 e-i(R-â)(t-t′) ei(R-â+â′-R′)t

) ∑
ââ′

[12∫-∞

∞
dτ 〈HRâ

+ (t) Hâ′R′
+ (t′)〉0(12{e-i(R-â)(t-t′) +

ei(R-â)(t-t′)})] ei(R-â+â′-R′)t (21)

)
1

4
∑
ââ′

[JRRâ′â′(R - â) + JRRâ′â′(â - R)] ei(R-â+â′-R′)t

1
2∫-∞

∞
dt′ 〈Hab

+ (t′) Hbb
+ (t)〉0 e-i(a-b)(t-t′) ei(a-b)t′ )

1
2∫-∞

∞
dt′ 〈σUb(t)〉0 e-i(a-b)(t-t′) ei(a-b)t′ (22)
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Now we can rewrite eq 22 as

With this and〈∆Uba(t)〉0 ) 0, we can write eq 18 as

where we used the fact that

Equation 25 is our final expression for the second-order
Liouville equation.

The next approach considered in this work is a direct use of
the Redfield formulation. In doing so we add to the standard
relaxation term theσ’s terms that do not exist in Redfield’s
treatment. This leads to a modified Redfield expression

The elements of theR matrix are given by

In our 2 × 2 test case we obtain

sinceJbaba(b - a) ) 0,

Now we can write

Comparing eq 29 and 25, we see that the only difference is
the last term in eq 25. Equations 29 and 25 will become identical
once we assume that

e-i(a-b)(t-t′) = cos[(a - b)(t - t′)] (23)

) 1
2
{cos[(a - b)(t - t′)] + cos[(b - a)(t - t′)]}

) 1
2
[ei(a-b)(t-t′) + e-i(a-b)(t-t′)]

1
2∫-∞

∞
dt′ 〈σ Ub(t)〉0[12{ei(a-b)(t-t′) + e-i(a-b)(t-t′)}] ei(a-b)t )

1
4
[Jabbb(a - b) + Jabbb(b - a)] ei(a-b)t (24)

〈F̆aa
/ (t)〉0

(2) ) i
p

〈(Fab
/ (t0) σba ei(b-a)t - Fba

/ (t0) σab ei(a-b)t)〉0 -

1

2p2
σab

2 〈Faa
/ (t0) - Fbb

/ (t0)〉0∫-∞

∞
dt′ [ei(a-b)(t-t′) + ei(b-a)(t-t′)] )

i
p

〈(Fab
/ (t0) σba ei(b-a)t - Fba

/ (t0) σab ei(a-b)t)〉0 (25)

〈F̆ab
/ (t)〉0

(2) ) i
p

〈[Fab
/ (t0) ∆Uba(t) + σab ei(a-b)t (Faa

/ (t0) -

Fbb
/ (t0)]〉0 + 1

2p2∫-∞

∞
dt′ {〈[2σab

2e2i(a-b)t Fba
/ (t0)]〉0 -

〈Fab
/ (t0)〉0〈∆Uba(t) ∆Uba(t′)〉0} ) i

p
σabei(a-b)t 〈[Faa

/ (t0) -

Fbb
/ (t0)]〉0 - 1

2p2
〈Fab

/ (t0) ∫-∞

∞
dt′ [∆Uba(t) ∆Uba(t′)]〉0

∫-∞

∞
dt′ ei(a-b)t′ ) ∫-∞

∞
dt′ cos[(εa

0 - εb
0)t′] ) 0

F̆RR′
/ (t) ) ∑

ââ′
RRR′ââ′ ei(Rj-Rj ′-âh+âh′)t Fââ′

/ (t0) +
i

p
∑

â

[FRâ
/ (t0)

σâR′ ei(âh-Rj ′)t(1 - δâR′) - σRâ FâR′
/ (t0) ei(Rj-âh)t(1 - δRâ)] (26)

RRR′ââ′ )
1

2p2
[JRâR′â′(Rj ′ - âh′) + JRâR′â′(Rj - âh) -

δR′â′∑
γ

JγâγR(γj - âh) - δRâ∑
γ

JγR′γâ′(γj - âh′)] (27)

Raaaa)
1

2p2
[2Jaaaa(0) - Jaaaa(0) - Jbaba(b - a) - Jaaaa(0) -

Jbaba(b - a)] ) 0 (28)

Rbbaa) 1

2p2
[2Jbaba(b - a) - δba - δba] ) 0 (28)

Raabb) 1

2p2
[2Jabab(a - b) - δab - δab] ) 0

Rabab) 1

2p2
[2Jaabb(0) - Jaaaa(0) - Jbaba(b - a) -

Jabab(a - b) - Jbbbb(0)]

) 1

2p2
[2Jaabb(0) - Jaaaa(0) - Jbbbb(0)] -

1

2p2
[Jbaba(b - a) + Jabab(a - b)]

) 1

2p2∫-∞

∞
[2〈Ua(0) Ub(t)〉0 - 〈Ua(0) Ua(t)〉0 -

〈Ub(0) Ub(t)〉0] dt - 1

2p2∫-∞

∞
2σ2 dt

) - 1

2p2∫-∞

∞
〈∆Uba(0) ∆Uba(t)〉0 dt ) - 1

T2

Rabaa) 1

2p2
[2Jaaba- Jabaa- Jbbba]

) 1

2p2∫-∞

∞
〈2Ua(t) σ - σ Ua(t) - Ub(t) σ〉0 dt

) - 1

2p2∫-∞

∞
{〈∆Uba(t)〉0 σ} dt ) 0

Rabbb) 1

2p2∫-∞

∞
{〈∆Uba(t)〉0 σ} dt ) 0

Rabba) 1

2p2
[Jabba(b - a) + Jabba(a - b)]

) 1

2p2∫-∞

∞
2σ2 dt ) 0

〈F̆aa
/ (t)〉0 ) RaaaaFaa

/ (t0) + Raaabe
i(b-a)tFab

/ (t0) +

Raabae
i(a-b)t Fba

/ (t0) + RaabbFbb
/ (t0) +

i
p

〈[Fab
/ (t0) σbaei(b-a)t - σab ei(a-b)t Fba

/ (t0)]〉0 (29)

) i
p

〈[Fab
/ (t0) σbaei(b-a)t - Fba

/ (t0) σab ei(a-b)t]〉0

〈F̆ab
/ (t)〉0 ) Rabab〈Fab

/ (t0)〉0 + Rabbae
2i(a-b)t〈Fba

/ (t0)〉0 +

Rabaae
i(a-b)t〈Faa

/ (t0)〉0 + Rabbbei(a-b)t〈Fbb
/ (t0)〉0 +

i
p

〈[Faa
/ (t0) σab - σab Fbb

/ (t0)] ei(a-b)t〉0

) + i
p

σab ei(a-b)t〈[Faa
/ (t0) - Fbb

/ (t0)〉0 - 1
T2

〈Fab
/ (t0)〉0
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This approximation is partially an ad hoc approximation, since
it is essential for obtaining the simpleT2 expression for
Redfield’s treatment. However, it is reasonable to assume that
Fab(t0), which depends on the way the system is prepared, is
not correlated strongly with∆Uba(t). The approximation used
here can be also used in the second-order Liouville equation.
We left this equation, however, in the form of eq 25 in order to
help clarify why the use of the Redfield equation is faster than
the use of the first- and second-order Liouville equation. The
reason is, of course, that in the Redfield treatment we evaluate
T2 once while in the second-order Liouville treatment we keep
evaluating the∆U × ∆U product at each time step in the
integration ofF*( t).

One may wonder at this point why our treatment does not
have a formalT1 term for the relaxation between the solvent
modes. The reason is that our semiclassical treatment treats
classically the relaxation between the vibrational modes of the
same electronic state. This relaxation is obtained automatically
in the MD simulations. The validity of this treatment is
established in the next section where we show that we reproduce
the correct microscopic reversibility relationship.

III. Comparing Different Treatments

Equation 29 is not identical to eq 25 because of the use of
different approximations. Thus, it is not clear if they give
physically correct results. In particular, it is not obvious that
the resulting forward and backward rate constants satisfy the
requirement of microscopic reversibility. An effective way to
check the validity of the different expressions is to examine
whether the results reproduce Marcus’ relationship for well-
defined test cases. Here, we considered as a test case an electron
transfer between a sodium-like ion and a sodium-like atom (Na+

+ Na f Na + Na+) in water. The simulations were done using
the program ENZYMIX34 and applying the surface constraint
all-atom solvent (SCAAS) spherical model20,35 with a sphere
radius of 20 Å. The long-range forces were treated consistently
by the local reaction field (LRF) approach.36 The wan der Waals
parameters for the sodium-water interaction were taken from
ref 20, and the donor-acceptor pair was held at 4.0 Å apart,
assuming that the electronic coupling is 1 cm-1 (i.e., σ ) 1
cm-1). The rate constant of electron transfer between these two
ions was evaluated using our umbrella sampling/free energy
perturbation approach.8,20 The relevant data were generated by
running trajectories over 11 mapping potentials that took the
system gradually from the reactant to the product state (see ref
20 for more details about this procedure). The trajectories were
propagated with 1 fs time steps at 300 K. Each of the 11
mapping steps involved 40 ps simulation time. The resulted
time-dependent energy gap,∆Uba(t), and its autocorrelation are
given in Figure 1. The rate constants generated by the simulated
∆U(t) depend on the assumed∆G0 (or εb

0 - εa
0). This ∆G0 can

be shifted in a parametric way from its zero value to any other
value. Thus, our study is not confined to the Na+-Na system
but to hypothetical sodium-like spherical atoms with the same
solute-solvent interaction energies as the Na and Na+ but with
different ionization energy and thus different∆G0.

The free energy perturbation/umbrella sampling treatment
gives the free energy functions (the Marcus parabola) depicted
in Figure 2 with a reorganization energyλ ) 75.0 kcal/mol.
The use of the energy gap∆Uba(t) and the relationship〈∆Uba〉a

) λ + ∆G0 gaveλ ) 75.4 kcal/mol. The rate constant of our
system was first estimated using the Marcus formula

Figure 1. Fluctuations of the time-dependent energy gap (a) and the
corresponding normalized autocorrelation function (b) for the Na+ +
Na f Na + Na+ process considered in the text.

Figure 2. Free energy functions for the system considered in Figure
1. The reaction coordinate is taken as the energy gap (i.e.,x ) Ub -
Ua + (εb

0 - εa
0), where (εb

0 - εa
0) is taken to be zero in this specific

case). For a clear discussion of the nature of this reaction coordinate
and the construction of the corresponding free energy functionsga and
gb, see ref 20.

〈Fab
/ (t0) ∫-∞

∞
dt′ [∆Uba(t) ∆Uba(t′)]〉0

= 〈Fab
/ (t0)〉0∫-∞

∞
dt′ 〈∆Uba(t) ∆Uba(t′)〉0

)
〈Fab

/ (t0)〉0

T2
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With the aboveλ andσ we obtain the dependence of the rate
constant on∆G0 as described in Figure 3.

Next we examined our different density matrix treatments
by comparing them to the Marcus rate constant. The calculations
used the∆Uba(t) of Figure 1 and produced time-dependentF’s
of the type presented in Figure 4. The rate constant was
calculated from the correspondingF(t) using

where∆t is small on the reaction time scale but large on the
time scale of the integration ofF. The integration was done by
the Runge-Kutta method.

The dependence of the rate constants of the different models
on∆G0 was evaluated by repeating the calculations for different
values ofεb

0 - εa
0. We started this study by considering the

performance of the semiclassical trajectory (ST) rate constant,
kST, obtained from our previous surface hopping approach1,8

(using the time dependence of theC’s of eq 4). The calculated
kST (Figure 5) was obtained by the Runge-Kutta integration
procedure with time steps of 0.2 fs. The results of this integration
were averaged over 10 initial conditions. These initial conditions
were generated by starting at different points along the simulated
energy gap. As seen from Figure 5, ourkST reproduces the results
obtained by the Marcus relationship, as found in previous
studies.1,8 Next we examined the direct integration of the
Liouville equation. In this case we needed time steps of 0.1 fs
and an average of 20 initial conditions to obtain converged
results that reproduced the results of Marcus’ relationship (see
Figure 5).

The performance of the second-order Liouville equation (eq
25) and the Redfield equation (eq 29) is described in Figure 6.
The convergence of the second-order Liouville equation was
obtained with time steps of 0.2 fs and an average of 20 initial
conditions. The Redfield approach converged with time steps
of 1.0 fs and an average of five initial conditions. Thus, it
appears that the Redfield equation converges much more quickly
than the direct integration of the Liouville equation and the
second-order Liouville treatment. This is due to the use of the
autocorrelation function, which is determined once and then used
as a constantT2 term in the Redfield treatment. In our case we
find that the Redfield treatment is roughly 20 times faster than
the Liouville treatment.

In concluding this section, it might be useful to mention that
all the treatments considered reproduce the correct microscopic
reversibility. This is so, since all these treatments reproduced
the trend obtained by the Marcus’ relationship and this relation-
ship involves forward and backward rate constants that satisfy
the requirement of microscopic reversibility.

IV. Quantizing the Solvent Degrees of Freedom

The above treatments are based on a semiclassical approach
that treats the solvent fluctuations classically. This involves
several problems, ranging from the underestimate of quantum
mechanical tunneling to the fact that the correct implementation
of the semiclassical surface hopping approach is not necessarily
clear. In fact, semiclassical approaches by their nature are not
“exact” quantum mechanical treatments (see discussion in ref
8). There are also practical problems that are not fully resolved.

For example, in our case it is not obvious what the correct way
of treating the solute-solvent coupling should be. In the case
of small electronic coupling, we can run trajectories on a
potential surface that reflects only the reactant charges (see ref
8). However, when the magnitude ofσ increases, it is more
proper to let the solvent see a superposition of the reactant and

Figure 3. Rate constants for the Na+ Na+ f Na+ + Na type process
as a function of an arbitrarily assumed∆G0. The calculations were
done using Marcus formula with theλ obtained from Figure 2 (λ ) 75
kcal/mol).

Figure 4. Typical time dependence ofFaaandFbb. The results are taken
from the Liouville equation treatment with∆G0 ) -75 kcal/mol and
σ ) 1 cm-1.

Figure 5. Dependence of the rate constants on∆G0 for the Na+ Na+

f Na+ + Na type process, calculated using the Liouville equation (O),
using the semiclassical trajectories approach (0), and using Marcus
relationship (4). The calculations usedσ ) 1 cm-1.

k ) |σ/p|2[πp2/(kBTλ)]1/2 exp{-∆gq/(kBT)} (30)

∆gq ) (∆G0 + λ)2/(4λ)

k )
∆〈Fbb(t)〉0

∆t
(31)
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product charges (see ref 7) so that the solvent trajectories are
propagated on a combination of the reactant and product
potential surfaces. This can be partially solved by moving to
the adiabatic representation, but the available formulations do
not provide exact quantum mechanical results. Furthermore,
approaches that involve splitting of trajectories are not easily
implemented in Redfield type formulations.

A possible way to obtain a more rigorous quantum mechanical
treatment that overcomes many of the above problems is to use
vibronic-based density matrix approach. That is, one can try to
develop approaches that treat the nuclear coordinate quantum
mechanically but still reflect the microscopic physics of the
simulated system. Thus, we divide our system into a quantum
mechanical space that includes the solute modes and all the
“active” solvent modes that are coupled to the solute reaction
coordinate and a classical space that includes the rest of the
solvent modes. For related work see refs 29-31. To treat the
“active” solvent modes quantum mechanically, we have to know
their vibrational frequencies and Franck-Condon (FC) factors.
Fortunately, this can be accomplished using the dispersed
polaron (spin boson) approach1,32where the FC factors for each
pair of electronic states are obtained by considering the time-
dependent energy gap as a Fourier transform,

Using the Wiener-Khintchine theorem, one obtains19

Now using the relationship7

(where ∆j and ωj are, respectively, the origin shift and
vibrational frequency of thesth state andnjs ) 1/[exp(pωsâ) -
1]), one obtains8

where we use the high-temperature approximation fornjs. Note
that A(ω) can be normalized by

whereλ is the total reorganization energy. Once the origin shifts
are known, we can get the FC factors by

where we use the relationship

and obtain the generalcnsms by using the proper recursion
formula.8

With the solvent FC factors we can now write the vibronic
Hamiltonian as

Now we can write a Liouville equation for the system where,
in contrast to the semiclassical case, we do not have any
fluctuating term in our Hamiltonian (within the harmonic
approximation). This means that, at least formally, we have no
T2 term of the type given by eq 28 and all the corresponding
dissipation effects are given by thecnm terms (which provide
the equivalent of theT2 term). However, our treatment requires
a term that represents the dissipation of energy between
vibrations of the same electronic state. That is, our Liouville
equation is expressed as

whereFeq is the equilibrium value ofF, while R is the relaxation
matrix. In our case, we choose the simple expression

We could, of course, use more rigorous expressions (e.g.,
ref 30), which will be examined in subsequent studies. However,
the main point is thatT1 is still a phenomenological parameter
(microscopic strategies for obtainingT1 will be considered in
subsequent work). Thus, the present treatment describes the
relaxation between different electronic states (theT2 process)
by the microscopically derivedσRâcnm

Râ terms of eq 39, while
describing the relaxation within vibronic levels of the same
electronic states using a phenomenologicalT1.

To examine the vibronic approach, we considered the electron
transfer from the bacteriopheophytin chromophore (HL) to the
primary quinone (QA) in the bacterial reaction center ofRps.
Viridis (see ref 1 for a description of this system). This process
was studied previously by a dispersed polaron treatment.21 The
present work represented the∆i(ω) of ref 21 by a three-mode
model, using∆1 ) 1.10,∆2 ) 1.80,∆3 ) 1.84,ω1 ) 40 cm-1,
ω2 ) 400 cm-1 and ω3 ) 2275 cm-1. T1 was taken as 1 ps
following ref 1. The vibronic Liouville equation that was
constructed for the assumed∆G° (values between zero to

Figure 6. Dependence of the rate constant on∆G0 for the Na+ Na+

f Na+ + Na type reaction, calculated using the second-order Liouville
equation (0) (eq 25), the modified Redfield equation (O) (eq 29), and
the Marcus relationship (4) (eq 30). The calculations usedσ ) 1 cm-1.

∆U(t) ) 1
2π∫-∞

∞
A(ω) eiωt dω (32)

lim
τf∞

|A(ω)|2/τ ) ∫dt e-iωt 〈∆U(0) ∆U(t)〉 (33)

〈∆U(0) ∆U(t)〉 ) p2 ∑
s

ωs
2 ∆s

2(njs + 1/2) cosωst (34)

lim
τf∞

|A(ω)|2/τ ) πpωkBT∑
s

∆s
2 δ(ω-ωs) (35)

∫-∞

∞
(|A(ω)|2/τ) dω ) πpωλ2kBT (36)

cnm
Râ ) ∏

s

cnsms

Râ (37)

(cns0
ab )2 ) exp{-∆s

2/2}(∆s
2

2 )ns

/ns! (38)

Hnm
Râ ) σRâcnm

Râ (39)

Hnn
RR ) ∑

s

pωs(ns + 1/2)

〈F̆〉 ) 〈FH - HF + R(F-Feq)〉 (40)

Rnm
Râ ) 0 for R * â (41)

Rnm
RR ) -

1

T1

for∑
s

|ms - ns| ) 1

Rnm
RR ) 0 for ∑

s

|ms - ns| > 1
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-10 000 cm-1) and the corresponding rate constants were
calculated by direct integration of this equation. The dependence
of the calculated rate constant on∆G° is shown in Figure 7.
As can be seen by comparing Figure 7 to Figure 4b of ref 21,
we reproduce the general trend of the dispersed polaron
treatment and in particular the deviation from the Marcus
relationship in the inverted region.

V. Concluding Remarks

This work developed and examined microscopically based
density matrix methods for studies of electron transfer and other
charge-transfer reactions in condensed phases. The starting point
of our approach is a molecular dynamics simulation of a donor-
acceptor pair in an all-atom solvent model. The simulation
provides the time-dependent gap between the energies of the
product and reactant states, and this energy gap is introduced
in the diagonal elements of the Hamiltonian of the system. The
resulting time-dependent Hamiltonian is then used to construct
the corresponding Liouville equation. This Liouville equation
is then used in three treatments. The first one involves a direct
numerical integration of the Liouville equation. The second
treatment manipulates the second-order Liouville equation in
the way used in the derivation of the Redfield equation. The
resulting second-order equation is then integrated numerically.
The third approach constructs a Redfield type equation directly
using the Redfield formulation for the various matrix elements
and adding the effect of the time-independent electronic matrix
element. The resulting equation is then integrated numerically.

The validity of the different treatments is examined by
comparing their results to those obtained from the corresponding
Marcus equation. All the methods reproduce the results obtained
from the Marcus equation. However, the direct integration of
the Liouville equation and the second-order Liouville equation
converge much more slowly than the Redfield treatment.

Having a microscopically based density matrix can provide
an interesting insight. For example, in the present case we obtain
the autocorrelation timeT2 directly from the autocorrelation of
the electronic energy gap. This is quite different from treatments
that considerT2 as a phenomenological parameter. This point
is particularly important in studies of ET in proteins where it is
not obvious how to obtain the proper value ofT2 without relating
it to microscopic simulation of the actual environment around
the donor and acceptor.

Our treatments can be used, at least formally, in both the
diabatic and adiabatic limits. In the diabatic limit we can run
trajectories on the reactant state and assume that those trajec-
tories that cross to the product state will not cross back in a

short time. We can also assume that trajectories that cross to
the product surface do not interfere with those that move on
the reactant surface. Unfortunately, the issue of what is the
effective surface for the nuclear trajectories (the solvent
trajectories) is less clear, despite recent advances (for example,
see ref 22). Furthermore, in the adiabatic limit we have to
consider the proper solute-solvent coupling. It is possible that
using the current approach for largeσ will produce results that
do not obey microscopic reversibility. In such cases one may
require the solute to follow a potential that involves the adiabatic
solute dipole.7 Examination of this important issue is left to
subsequent studies.

The main focus of the present work was placed on a
semiclassical treatment where the solvent coordinates are
considered classically. Such a treatment is subject to the above-
mentioned problems. Furthermore, quantum mechanical features
of the solvent motion are neglected. These problems can be
overcome, at least in a partial way, by using an alternative
approach1 that treats the solvent motion quantum mechanically.
In this approach we follow the same trick introduced in the
dispersed polaron (spin boson) model8,32 and use molecular
simulations to evaluate the Franck-Condon factors for the
solvent modes. These Franck-Condon factors are then intro-
duced in the relevant Liouville equation.1 Here again, we have
a microscopically based density matrix with the exception that
the correlation timeT1 for transition between vibrations in the
same electronic manifold is considered as a phenomenological
parameter. Future studies will attempt to obtain this parameter
from microscopic simulations.
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